Climate Smart Communities **Building Energy Training**

ENGINEERING, P.C. JSTAINABLE SOLUTIONS SINCE 1981

An Independent Contractor to NYSERDA

April 2, 2013

Technical Consultant Team

Kari Hewitt, CEM, LEED AP Sustainability Planner for VHB 617-924-1770 x1332

Khewitt@VHB.com

Angela J. Vincent Sustainability PM for VHB 617-924-1770 x1287

avincent@vhb.com

Todd Fabozzi
Program Manager
Capital District Regional Planning Commission
518-453-0850

todd@cdrpc.org

Workshop Leaders

Mark Bagdon, PE Principal of Novus Engineering, P.C. 518-439-8235

mbagdon@novusengineering.com

Cara Martin
Project Manager
518-439-8235

cmartin@novusengineering.com

Workshop Purpose

After completing this workshop, you will be able to answer these questions:

- How is energy use measured, billed, tracked, assessed, and managed?
- What contributes to energy use in a facility and how can energy consumption be reduced?

Section 1: Climate Smart Communities Program

Climate Smart Communities

- Clifton Park adopted the CSC Pledge in 2009 and Saratoga Springs in 2011
- Goal of the program:
 - "Reduce greenhouse gas emissions, save taxpayer dollars, and advance community goals for health and safety, economic vitality, energy independence and quality of life."
- In 2012, NYSERDA contracted CDRPC to provide technical assistance to Climate Smart Communities throughout the Capital Region. VHB is a subcontractor for the technical assistance program.

CSC Pledge Elements

- 1. Pledge to Combat Climate Change by Becoming a Climate Smart Community
- 2. Set Goals, Inventory Emissions, Move to Action
- 3. <u>Decrease Energy Demand for Local Government Operations</u>
- 4. Encourage Renewable Energy for Local Government Operations
- Realize Benefits of Recycling and Other Climate Smart Solid Waste Management Practices
- 6. Promote Climate Protection Through Community Land Use Tools
- 7. Plan for Adaptation to Unavoidable Climate Change
- 8. Support a Green Innovation Economy
- 9. Inform and Inspire the Public
- 10. Commit to an Evolving Process

Section 2: Relative Costs of Fuels and How Energy is Billed

What energy sources are used in your facilities?

Energy Sources and Billing Method

Energy Source	Units	Billing Method
Electricity Consumption	Kilowatt hours (kWh)	Utility meter
Electricity Demand	Kilowatt (kW)	Utility meter
Natural Gas	Therms or ccf (100 cubic feet)	Utility meter
Propane	Gallons	Delivery
Fuel Oil and Diesel	Gallons	Delivery

Definitions:

- 1. kWh Actual amount of electrical energy used over a time period
- 2. kW Demand Peak rate of power consumption (max 15 minute period per month)
- 3. Therm unit of heating energy = 100,000 BTU
- 4. MMBtu 1,000,000 Btu or 10 Therms
- 5. ccf 100 cubic feet = 1.03 therms
- 6. Mcf = 1000 cubic fee ≈ 1MMBtu

Relative Costs of Energy Sources

Energy Source	Cost per Typical Unit	Cost per MMBtu
Electricity	\$0.16 /kWh	\$47.37 /MMBtu
Natural Gas	\$0.70 /therm	\$7.59 /MMBtu
Propane	\$2.25 /gallon	\$24.73 /MMBtu
Fuel Oil	\$3.12 /gallon	\$28.06 /MMBtu

Electricity Billing

Delivery Portion:

Type of Service	Delivery Current Reading	- Previous Heading =	Dillerence	Meter > x Multiplier =	Total Usagi
Energy	70959 Actual	70531 Actual	428	160	68480 KW
				tal Energy Usage	68480 cWh
				ed Energy Usage	68480 (Wh
Demand	246.53 Actual	244.75 Actual	1.78	160	284.8 KW
			Tota	I Demand Usage	284.E kW
			Billed	d Demand Usage	284.₺ kW
	Oct 7 - Nov 5	NEXT SCHEDULED READ DAT NUMBER OF DAYS IN PERIOD LIVERY LEVEL 0 - 2.2 KV	29	METERING TYPE SOCO	ondary
ATE Electr	Oct 7 - Nov 5 ic SC3 voltage de	NUMBER OF DAYS IN PERIOD	29	~	<u>, </u>
ATE Electr	Oct 7 - Nov 5 ic SC3 voltage be omer	NUMBER OF DAYS IN PERIOD	29	METERING TYPE SOCO	26).15
Custo	Oct 7 - Nov 5 ic SC3 voltage be omer 150 Hours	NUMBER OF DAYS IN PERIOD LIVERY LEVEL 0 - 2.2 kV	29 684	METERING TYPE SOCO	26).15 777.25
Custo First 4	Oct 7 - Nov 5 ic SC3 voltage be omer 450 Hours	NUMBER OF DAYS IN PERIOD LIVERY LEVEL 0 - 2.2 kV 16.65	29 684 x 284	METERING TYPE SOCO 480 kWh 4.8 kW	26).15 777.25 4,741.92
Custo First 4 Dema SBC/	Oct 7 - Nov 5 ic SC3 voltage be omer 450 Hours and RPS	NUMBER OF DAYS IN PERIOD LIVERY LEVEL 0 - 2.2 kV 16.65 0.004619	68 ⁴ x 28 ⁴ x 68	METERING TYPE Seco 480 kWh 4.8 kW 480 kWh	26).15 777.25
Custo First 4 Dema SBC/ Incr S	Oct 7 - Nov 5 ic SC3 voltage becomer 450 Hours and RPS State Assessment	NUMBER OF DAYS IN PERIOD LIVERY LEVEL 0 - 2.2 kV 16.65 0.004619	68 ⁴ x 28 ⁴ x 68	METERING TYPE SOCO 480 kWh 4.8 kW	26).15 777.25 4,741.92
Custo First 4 Dema SBC/ Incr S	Oct 7 - Nov 5 ic SC3 voltage be omer 450 Hours and RPS	NUMBER OF DAYS IN PERIOD LIVERY LEVEL 0 - 2.2 kV 16.65 0.004619	68 ⁴ x 28 ⁴ x 68 x 28 ⁴	METERING TYPE Seco 480 kWh 4.8 kW 480 kWh 4.8 kW	26).15 777.25 4,741.92 313.30
Custo First 4 Dema SBC/ Incr S	Oct 7 - Nov 5 ic SC3 voltage be omer 450 Hours and RPS State Assessment	NUMBER OF DAYS IN PERIOD LIVERY LEVEL 0 - 2.2 kV 16.65 0.004619	68 ⁴ x 28 ⁴ x 68 x 28 ⁴	METERING TYPE Seco 480 kWh 4.8 kW 480 kWh 4.8 kW	26).15 777.25 4,74 I.92 31 3.30 28 1.80

Electricity Billing

Supply Portion:

Electricity Supply

SUPPLIER National Grid

	Total Electricity Supply	\$ 4 CO1 5C
Sales Tax	8.0 %	346.78
Electricity Supply	0.0633 x 68480 kWh	4 334.78

SUMMARY OF CURRE	NT CHARGES		
	DELIVERY SERVICES	SUPPLY SERVICES	TOTAL
Electric Service	6,725.18	4,681.56	11,406.74
Gas Service	403.54	1,144,32	1,547,86
Total Current Charges	\$ 7,128.72	\$ 5,825.88	\$ 12 954.60

Sample Electrical Energy and Demand Calculations

100, Light fixtures @ 50 Watts Each = 5000 Watts 5000 / 1000 Watts per kW = 5 kW

1, 10 Hp motor 10 x 0.746 kW/Hp = 7.46 kW

200, Desktop Computers @ 125 Watts Each = 25,000 Watts 200 x 125 / 1000 W/kW = 25 kW

TOTAL DEMAND= 37.5 kW
TOTAL ENERGY = 37.5 kW x 720 hours/month
= 27,000 kWh/month

Electricity Cost Calculations

Monthly Cost

- Energy27,000 kWh x \$0.10/kWh = \$2,700
- Demand37.5 kW x \$10/kW-month = \$375

Total Monthly Cost = \$3,075

What is the Relationship Between Energy and Demand?

How might the energy used in the previous example change while the demand stays the same?

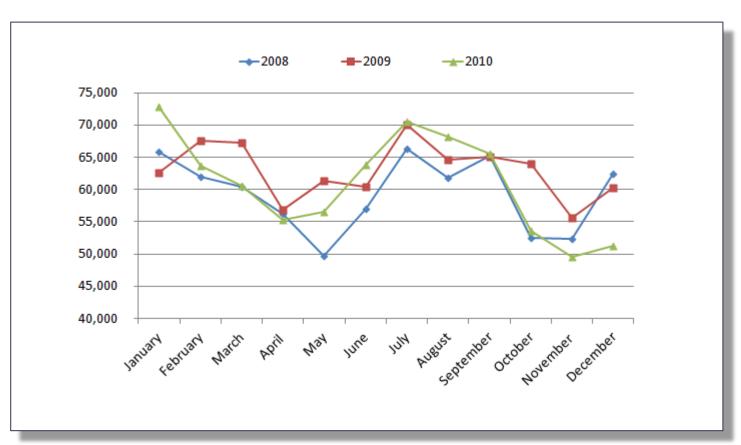
Section 3: Energy Information Management

Energy Management:

Useful Metrics to compare energy use

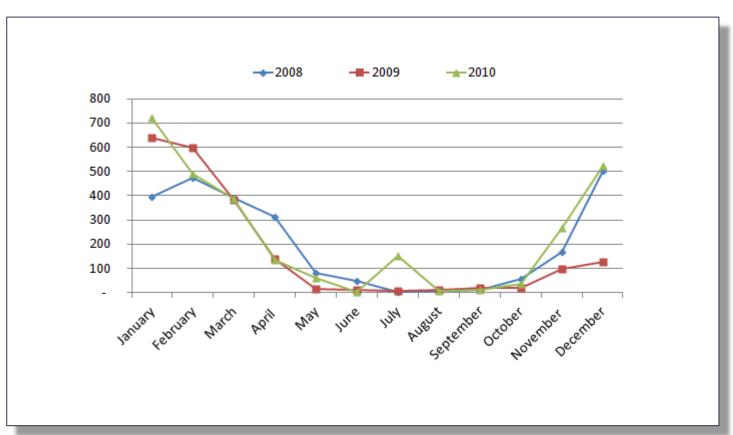
Fuel	Useful Metrics
Electricity	kWh/SF; \$/SF; kWh/person; kWh/unit of product
Natural Gas	Therms/SF; \$/SF; therms/HDD
Propane and Fuel Oil	Gallons/SF; MMBtu/SF; \$/SF

Definitions:


SF = square footage (building area)

HDD = heating degree day

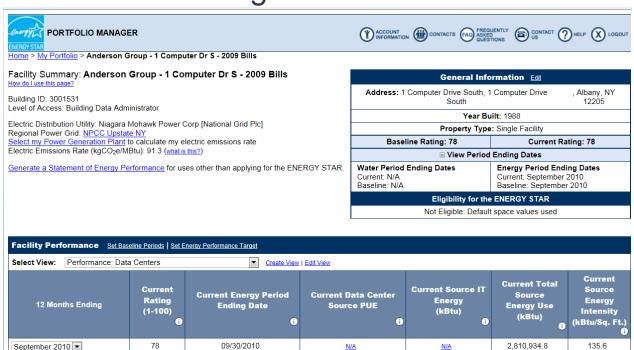
Energy Management: Tracking


Electricity Consumption (kWh) for Sample Building

What Does This Trend Suggest?

Natural Gas Consumption (therms) for Sample Building

Heating Energy versus Heating Degree Days


2011 Natural Gas Consumption (therms) and Heating Degree Days for Sample Building

Month	Gas Consumption (therms)	Heating Degree Days for Billed Period	Therms / Heating Degree Day
January	3,752	825	4.6
February	3,940	702	5.6
March	2,299	317	7.3
April	1,652	45	36.7
May	459	1	459
June	161	0	N/A
July	117	0	N/A
August	142	39	3.6
September	603	303	2.0
October	1,845	432	4.3
November	2,588	748	3.5
December	3,344	903	3.7

Benchmarking

- Calculate electric, gas, and cost metrics per building
- Compare to typical averages:
 - EPA Portfolio Manager

Benchmarking

- Compare to typical averages:
 - Commercial Building Energy Consumption Survey (CBECS)

Table C15A. Electricity Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003

	Total Electricity Consumption (billion kWh)			Total Floorspace of Buildings Using Electricity (million square feet)			Electricity Energy Intensity (kWh/square foot)					
	North- east	Mid- west	South	West	North- east	Mid- west	South	West	North- east	Mid- west	South	West
All Buildings	172	234	452	185	13,899	17,725	26,017	12,541	12.4	13.2	17.4	14.7
Building Floorspace (Square Feet)												
1,001 to 5,000	14	30	52	19	1,031	1,742	2,410	1,296	13.5	17.4	21.5	14.6
5,001 to 10,000	11	17	37	21	1,128	1,558	2,640	1,319	9.8	10.8	14.0	15.8
10,001 to 25,000	22	33	59	28	2,094	3,317	4,746	2,338	10.4	10.0	12.5	12.1
25,001 to 50,000	14	33	48	21	1,388	2,628	3,318	1,764	9.8	12.6	14.6	12.1
50,001 to 100,000	29	32	68	24	2,272	2,376	4,059	1,558	12.6	13.5	16.8	15.7
100,001 to 200,000	28	37	84	22	2,238	2,475	4,105	1,353	12.4	15.1	20.5	16.6
200,001 to 500,000	24	29	42	17	1,781	2,288	2,104	1,196	13.3	12.9	20.0	14.0
Over 500,000	32	22	61	32	1,967	1,341	2,635	1,717	16.1	16.4	23.2	18.7

Section 4: Common Mechanical Equipment and Associated Efficiencies / Energy Savings Opportunities

What mechanical systems (heating, cooling and ventilation) are included in your facilities?

Heating Sources

- Hydronic and Steam Heating Systems
- Boilers
 - Hot water vs. Steam
 - Condensing vs. Non-condensing

Visitor's Center, Saratoga Springs

Heating Sources

- Terminal Units
 - Fin Tube Radiation (FTR)
 - Air handling units (AHUs)
 - Fan coils (FCUs)
 - Radiators
 - Unit Heaters
 - Gas
 - Electric
 - Hot Water
- Unitary Equipment
 - Rooftop Unit
 - Indoor furnace/AC units

Unit Heater, Clifton Park Garage Why was the temperature so high?

Air Handling Unit, Ice Rink, Saratoga Springs₂₇

Ventilation

- Ventilation is providing outside air inside a building for proper indoor air quality
- Minimum ventilation is required by code, depending on the building type and occupancy
- Under ventilated spaces will seem "stale" or have odor issues
- Over ventilated spaces will have very low CO₂ concentrations and can waste energy since ventilation air has to be heated
- Common methods in use:
 - Set it and forget it
 - Measure CO2 level
 - Measure outside air flow

Fans

- Used in most heating / cooling equipment for circulating air
- Can be large percentage of building energy consumption
- Small fans are inefficient
- Energy consumption is proportional to air volume (cfm) and pressure (inches water column)
- Can waste energy if throttled
- Reduce speed through sheave adjustment or Variable Frequency Drives (VFDs)

Pumps

- Sizing by engineers based on formulas with safety factors thrown in
- Typically adjusted by throttling down flow with balance valve – wastes energy
- Speed reduction to correct balance point via VFD can save substantial energy
- Small (<5 Hp) permanent magnet, variable speed pumps are much more energy efficient (Wilo Stratus or Gundfos

Magma)

Circulating
Pumps,
Town Hall,
Clifton Park

Outdoor Chiller
Pumps,
Ice Rink,
Saratoga Springs

Variable Frequency Drives (VFDs)

- Solid state devices that slow down motors on pumps and fans in response to load
- Prices have dropped significantly in the past few years
- Energy use is proportional to cube of speed
 ½ speed = 1/8 power
- Can be used for balancing or continuous control with active sensors (generally pressure)

Mechanical System Sizing

- One-to-one replacement not always optimal; systems typically oversized by design engineers (CYO syndrome)
- Oversized systems do not run as efficiently as properly sized systems and increase up-front capital cost
- Typical rules of thumb:
 - Cooling 400 600 SF/ton
 - Heating 12 50 MBH/SF
 - Air Flow 0.6 1.5 cfm/SF

Section 5: Controls

Mechanical System Controls:

Types

- Time Clock
- Thermostat
- Control Valves and Dampers
- Digital Controls

Mechanical System Controls:

Uses

- Turn equipment on and off
- Control equipment or space parameters
 - Temperature
 - Pressure
 - Flow
- Main types
 - On-off control
 - Modulating control

Mechanical System Controls:

Benefits

- Reduces energy consumption
- Saves time and effort
- Assists maintenance staff

Examples to Improve Performance:

- Periodically review setpoints for infrequently inhabited spaces that can tolerate lower temperatures (lobbies, storerooms, etc.)
- In areas that need temporary conditioning, such as garages, use digital thermostats with a temporary override, rather than a manual thermostat

Time Clocks

- Typically one day on/off control only
- 1, 7 and 365 day and astronomical versions are available
- Uses
 - Exterior lighting
 - Pneumatic systems
 - Fans
- What to check:
 - Proper setting of pins
 - Proper current time
 - Schedule posted

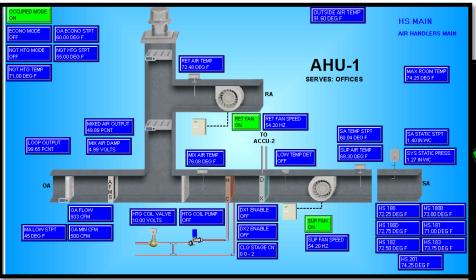
What's Missing?

Thermostats

- Temperature Control
- Range of control
 - One Day
 - Seven Day
 - Fully Programmable
- Features
 - Password Protected
 - Temporary versus permanent hold
- What to check:
 - Proper setting of schedules and set points
 - Proper current time
 - Schedule posted

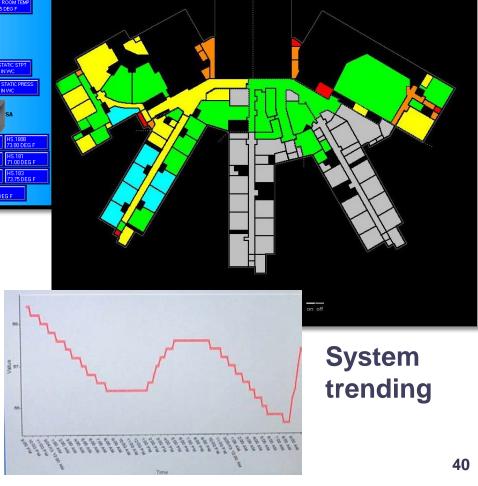
Hydronic/Steam Control Valves

24 V Pop Top Valve



Saratoga Town Hall

Self Contained Non-Electric Valve


Digital Controls

System details, settings, and alarms

It is important to receive full and adequate training for these types of systems!

Room-by-room temperature control and monitoring

Section 6: Weatherization

Windows

- Single pane vs. Double pane
- U-value and Solar Heat Gain Coefficient (SHGC)
- Common Problems:
 - Improper sealing
 - Cracks
 - Rust
- Solutions:
 - Proper caulking
 - Replacement
 - Windo-Therm
 (Advanced Energy Panels)

Visitor's Center, Saratoga Springs

Highway Garage, Clifton Park

Doors

- Common Problems:
 - Gaps between
 - Gaps above and below
 - Improper sealing
- Solutions:
 - Weatherstripping
 - Proper alignment
 - Door bottoms

Roof Penetrations

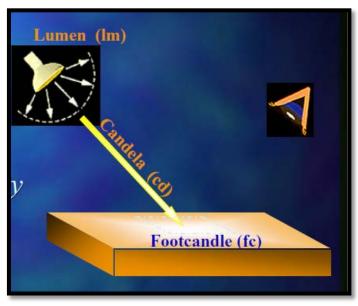
- Installed for building relief, exhaust, etc.
- Need to be properly sealed and controlled
- Building renovations may eliminate need for penetrations, but openings are not always closed

Dampers

- Wall or roof penetrations to allow in outside air
- Spring loaded or controlled
- Check for:
 - Adequate sealing
 - Proper actuator function

Weatherstripping

- Commercially available products
 - Door bottoms
 - Between door weatherstripping
 - Door edge weatherstripping



Section 7: Lighting

Key Terms

- Lumen
 Total amount of visible light emitted by a source
- Watt
 Power required by light source
- Efficacy (lumens per watt)
 Rated light output per unit power
- Footcandle (lumens per square foot)
 Measure of Illuminance: amount of light arriving on a surface
- Lighting Power Density (Watts per square foot)
 Amount of watts of installed lighting relative to room size

Key Terms

- Lifetime
 Number of rated hours a light source will operate
- Fixture Efficiency
 Percentage of lumens from light source exiting fixture
- Color Rendering Index (CRI)
 Scale from 1 to 100 of color accuracy;
 higher the number, the better the light source reveals true colors
- Correlated Color Temperature (CCT) Measured in degrees kelvin (K) – scale: ~1,500 to 10,000+

Key Terms


Lamp Lumen Depreciation (Lumen Maintenance) Loss of light over time; loss of 15-20% is generally acceptable.

- Warm-Up Time
 Amount of time needed for lamps
 to come to full brightness
- Re-Strike Delay
 Amount of time needed for lamps to turn back on after being turned off

Department of Energy Lighting Facts Label

Lighting Technologies

- Fluorescent
- Incandescent
- High Intensity Discharge
 - High Pressure Sodium (HPS)
 - Metal Halide (MH)
- Light Emitting Diode (LEDs)

Lighting Technologies: Fluorescent

Parameter	Compact Fluorescent	Т8	High Performance T8	Т5	T12
Lamp / System Type	13W Lamp & Elec. Ballast	32W Lamp & Elec. Ballast	32W Lamp & Elec. Ballast	28W Lamp & Elec. Ballast	34W Lamp & Magnetic Ballast
Light Output (Lumens)	850	2,800	3,100	2,900	2,600
Power Used (Watts)	13	32	32	28	38
Efficacy (Lumens per Watt)	65	88	97	103	68
Lifetime (Hours)	10,000	20,000	25,000	25,000	18,000
Warm-Up Time	Instantaneous	Instantaneous	Instantaneous	Instantaneous	Instantaneous
Re-Strike Delay	None	None	None	None	None
Lamp Lumen Depreciation	10%	10%	5%	5%	20%
Color Rendering Index (CRI)	80 - 90	80 - 90	80 - 90	80 - 90	60-80
Color Temperature (°K)	2,700 – 6,500	2,700 – 6,500	2,700 – 6,500	2,700 – 6,500	2,700 – 6,500

Lighting Technologies: Other

Parameter	Incandescent	HID / HPS	HID / MH	LED
Lamp / System Type	60W Lamp	250W Lamp & Elec. Ballast	400W Lamp & Magnetic Ballast	13W Lamp & Elec. Driver
Light Output (Lumens)	850	26,000	40,000	850
Power Used (Watts)	60	285	450	13
Efficacy (Lumens per Watt)	14	91	89	65
Lifetime (Hours)	1,000	30,000	20,000	50,000
Warm-Up Time	None	3 – 5 minutes	3 – 5 minutes	None
Re-Strike Delay	None	5 - 10 minutes	5 - 10 minutes	None
Lamp Lumen Depreciation	None	Up to 50% before failure	Up to 50% before failure	10%
Color Rendering Index (CRI)	100	22	65	82
Color Temperature (°K)	2,700	2,100	4,100	2,700

Lighting Technologies: Pros and Cons

Technology Type	Pros	Cons
Incandescent	Very high CRI - 100Warm color temperatureDimmable	Low efficiencyShort lifetimeHeat sources
Fluorescent	Instant strike and no re-strike timeHigh efficiency	 Shorter lamp life as compared to HID or LED Warm-up required in exterior applications
High Intensity Discharge (HID) / High Pressure Sodium (HPS)	High efficiencyLong lamp life	 Long warm-up time and re-strike delay; poor choice for use with occupancy and day-light controls Yellow looking, poor color rendering
High Intensity Discharge (HID) / Metal Halide	High efficiencyLong lamp life	 Long warm-up time and re-strike delay; poor choice for use with occupancy and day-light controls Inconsistent color shift over time, poor color rendering and harsh shadows
Solid State Light Emitting Diode (LED)	 Lower Power Long lamp life Dimmable without color change Instant strike and no re-strike time 	High Initial Cost

Lamp Statistics

Incandescent

Light Output: 850 Lumens

Lifetime: 1,500 Hours

Cost Per Bulb: \$0.50

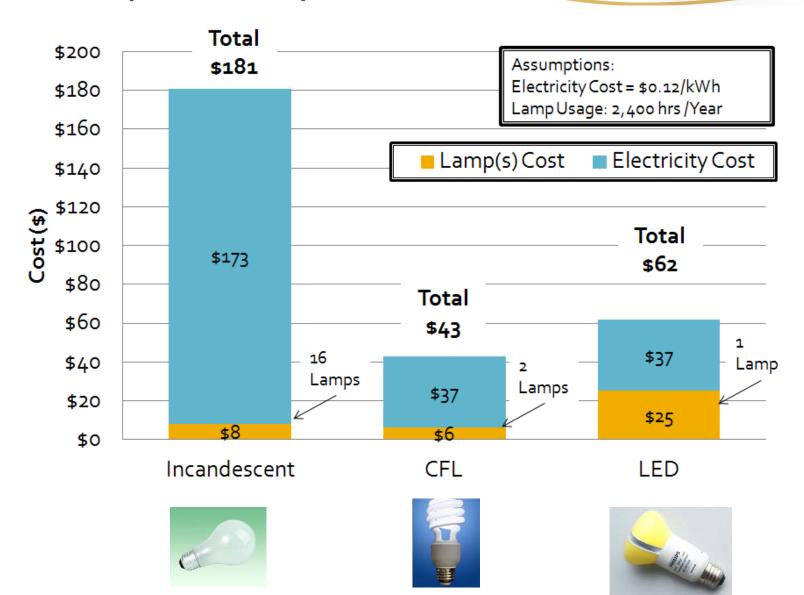
Compact Fluorescent (CFL)

Light Output: 850 Lumens

Lifetime: 12,000 Hours

Cost Per Bulb: \$3.00

Light-Emitting Diode (LED)


Light Output: 850 Lumens

Lifetime: 25,000 Hours

Cost Per Bulb: \$25.00

10-Year Lamp Cost Comparison

Fixtures

Luminaire

A complete lighting unit, consisting of the housing, lamp, lamp socket, and ballast, often referred to as a 'Light Fixture'

- Lamp
- Housing
- Lamp Sockets
- Reflector
- Lens
- Ballast

Most Common Fixture Types:

- Troffer
- Recessed Can
- Pendant
- Wrap
- Strip

Lighting Controls: Key Terms

- Switches
 - Breaks electrical circuit manually.
- Occupancy Sensors
 - Breaks electrical circuit automatically when occupancy signal is absent.

- Photocells
 - Breaks electrical circuit automatically when ambient light (daylight is present).
- Time Clocks
 - Break electrical circuit by pre-set time schedules.

Occupancy Sensor Technologies

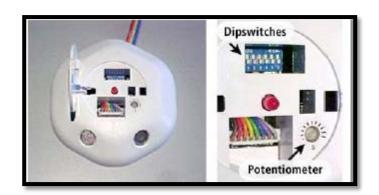
- Passive Infrared (PIR)
 Detects movement in direct line of site from sensor changes in heat patterns; electronic sensor detects infrared radiation
- Ultrasonic Sensors
 Emits inaudible, high frequency sound pattern; can detect movements outside direct line of sight
- Microphonic
 Listens for sounds in space; typically used alongside PIR technology

Occupancy Sensors

- Dual Technology Occupancy Sensors Combine either PIR and ultrasonic or PIR and microphonic
- Mounting Locations
 - Ceiling
 - Wall / Corner
 - Wall Switch

Lighting Controls: Occupancy Sensors

Placement

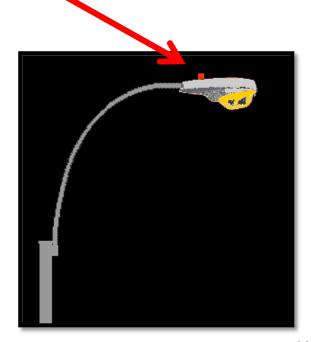

Important to place and orient correctly depending on room application and layout.

Sensitivity

High sensitivity could cause "false positive" triggering; low sensitivity could turn lights off when occupants still in room.

Time Delay-Off

Amount of time before sensor will turn light off; can be adjusted based on application.



Photocells Technology

Light sensing resistor controlling a relay

- When light, current flows freely
- When dark, resistance increases

Time Clocks

- Mechanical Time Clocks
 - Twist Timer Switches
 - Pin-based mechanical time clocks.
- Digital Time Clocks
 - Incorporate advanced daily schedules & holidays.
 - Incorporate astronomical features (sunrise, sunset, daylight savings time adjustments).

Section 8: Preventative Maintenance

Preventative Maintenance

- Regular inspection and servicing of equipment to correct minor deficiencies before they turn into major defects.
- Benefits:
 - Longer equipment life
 - Lower operating costs
 - Fewer breakdowns
 - Fewer occupant complaints
 - Advance notification of equipment purchases and/or part replacements

Preventative Maintenance Tools

- Operations & Maintenance manuals
- Spare belts/ filters
- Lubricants grease / oil / silicone
- Belt tension testers
- Temperature and pressure gauges
- Volt / amp meter
- Leak detector
- Preventative Maintenance Software

How to Set up a Preventative Maintenance Program

- Develop a full equipment inventory
- Review O&M manuals to determine maintenance requirements and intervals
- Pre-order replacement parts (filters, belts, filter driers, etc.)
- Develop a complete schedule of equipment needs and checks
- Check operating parameters periodically (temperatures, current draw) to warn of possible failures

Preventative Maintenance – 2

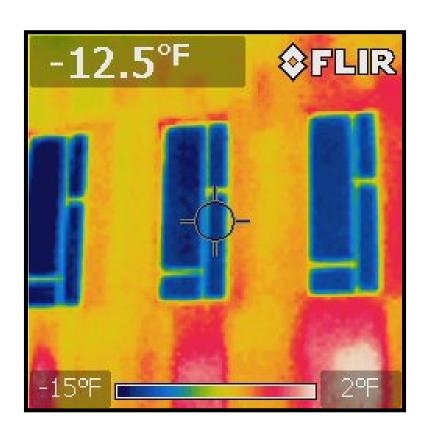
Record Keeping

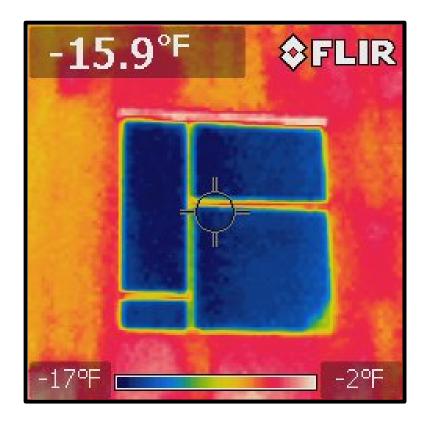
- Use a pre-packaged program or develop your own using spreadsheets, database software, etc.
- Generate calendar reminders or work orders with weekly and monthly tasks
- Track completed tasks

Services Contracts

- Rebid periodically using RFP
- Include full list of equipment covered and expected maintenance measures in RFP
- Develop your own contract rather than relying on vendor's

Section 9: Useful Tools




Energy Performance Tools

Tool	Capabilities	Uses	
Infrared Thermometer	Measure surface temperatures	Identify room temperatures, pipe temperatures, potential sources of heat loss	
Infrared Camera	Provides visual representation of thermal differences	Identify temperature gradients and potential sources of heat loss	
Carbon Dioxide Meter	Measures CO2 concentration	Determine if a space has too much or too little ventilation	
Anemometer	Measures airflow	Determine if too much of too little air is flowing into a space or into an HVAC unit	
Light Meter	Measures light levels	Determine if a space is adequately or over lit	
Flicker Checker	Identify magnetic ballasts	Determine which fixtures are using magnetic and electronic ballasts	

Infrared Camera Pictures

Summary Review

- What energy source is the most expensive?
- What is the difference between electricity consumption and demand?
- Why is it important to know and track energy consumption?
- What are some strategies for saving energy in a facility (mechanical, control, weatherization, and lighting)?

Example Energy Savings Opportunities

Clifton Park

- Link overhead door operation with unit heaters in highway garages
- Improve overhead door sealing
- Reduce heating setpoints in garages
- Install condensing unit heaters when existing units fail

Saratoga

- Use windo-therm to insulate Visitor's Center
- Install bottom storm windows (only screens installed)
- Implement more scheduling and temperature set back
- Install condensing boilers when existing units fail

Wrap Up

- What will you do differently based on what you learned today?
- Please complete your course evaluation before leaving.